Learning Mixtures of Ranking Models

نویسندگان

  • Pranjal Awasthi
  • Avrim Blum
  • Or Sheffet
  • Aravindan Vijayaraghavan
چکیده

Probabilistic modeling of ranking data is an extensively studied problem with applications ranging from understanding user preferences in electoral systems and social choice theory, to more modern learning tasks in online web search, crowd-sourcing and recommendation systems. This work concerns learning the Mallows model – one of the most popular probabilistic models for analyzing ranking data. In this model, the user’s preference ranking is generated as a noisy version of an unknown central base ranking. The learning task is to recover the base ranking and the model parameters using access to noisy rankings generated from the model. Although well understood in the setting of a homogeneous population (a single base ranking), the case of a heterogeneous population (mixture of multiple base rankings) has so far resisted algorithms with guarantees on worst case instances. In this talk I will present the a polynomial time algorithm which provably learns the parameters and the unknown base rankings of a mixture of two Mallows models. Joint work with Avrim Blum, Or Sheffet and Aravindan Vijayaraghavan Organizer(s): Eric Allender, Pranjal Awasthi, Michael Saks and Mario Szegedy

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارائه الگوریتمی مبتنی بر یادگیری جمعی به منظور یادگیری رتبه‌بندی در بازیابی اطلاعات

Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank has been shown to be useful in many applications of information retrieval, natural language processing, and data mining. Learning to rank can be described by two systems: a learning system and a ranking system. The learning system takes training data as input and constructs a ranking ...

متن کامل

Ranking Effective Bases on Performance of Human Resource Planning Systems (Correlation and Fuzzy Approach)

EnThe present research studied the relationship between organizational learning elements and human resources performance. Population of the research consisted of all managers Tehran Telecommunication Company. Data were collected through questionnaires which included 24 questions with seven items. To determine the impact and ranking theprinciples of organizational learning in performance of huma...

متن کامل

Learning Mixtures of Ranking Models

This work concerns learning probabilistic models for ranking data in a heterogeneous population. The specific problem we study is learning the parameters of a Mallows Mixture Model. Despite being widely studied, current heuristics for this problem do not have theoretical guarantees and can get stuck in bad local optima. We present the first polynomial time algorithm which provably learns the pa...

متن کامل

Learning Mallows Models with Pairwise Preferences

Learning preference distributions is a key problem in many areas (e.g., recommender systems, IR, social choice). However, many existing methods require restrictive data models for evidence about user preferences. We relax these restrictions by considering as data arbitrary pairwise comparisons—the fundamental building blocks of ordinal rankings. We develop the first algorithms for learning Mall...

متن کامل

ar X iv : 1 41 0 . 87 50 v 1 [ cs . L G ] 3 1 O ct 2 01 4 Learning Mixtures of Ranking Models ∗

This work concerns learning probabilistic models for ranking data in a heteroge-neous population. The specific problem we study is learning the parameters of aMallows Mixture Model. Despite being widely studied, current heuristics for thisproblem do not have theoretical guarantees and can get stuck in bad local optima.We present the first polynomial time algorithm which provably...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014